Constitutive and inducible expression of b7 family of ligands by human airway epithelial cells.
نویسندگان
چکیده
Activated T cells have been implicated in chronic rhinosinusitis (CRS) and asthma and physically interact with epithelial cells in the airways. We now report that human airway epithelial cells display significant constitutive cell-surface expression of costimulatory ligands, B7-H1, B7-H2, B7-H3, and B7-DC. Expression of B7-H1 and B7-DC was selectively induced by stimulation of either BEAS2B or primary nasal epithelial cells (PNEC) with interferon (IFN)-gamma (100 ng/ml). The combination of IFN-gamma and tumor necrosis factor-alpha (100 ng/ml) selectively induced expression better than IFN-gamma alone. Fluticasone treatment (10(-7) M) reduced the baseline expression and inhibited the induction of B7-H1 and B7-DC in BEAS2B cells. In vitro exposure of PNEC to IFN-gamma also resulted in selective induction of B7-H1 and B7-DC. Monoclonal antibody blockade of B7-H1 or B7-DC enhanced IFN-gamma expression by purified T cells in co-culture experiments, suggesting that these two B7 homologs inhibit T cell responses at the mucosal surface. Immunohistochemical staining of human sinonasal surgical tissue confirmed the presence of B7-H1, B7-H2, and B7-H3 in the epithelial cell layer, especially in samples from patients diagnosed with Samter's Triad, a severe form of CRS. Real-time PCR analysis of sinonasal tissue revealed elevated levels of B7-H1 and B7-DC in CRS compared with controls. These results demonstrate that epithelial cells express functional B7 costimulatory molecules and that expression of selected B7 family members is inducible in vitro and in vivo. Epithelial B7 homologs could play a role in regulation of lymphocytic activity at mucosal surfaces.
منابع مشابه
B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin.
B7-H1 (CD274) is a T-cell coinhibitory molecule that is also often induced on human carcinoma cells, where its expression has been implicated in immune escape. Under inflammatory conditions, B7-H1 is also inducible in normal epithelial cells but little is known about its involvement in conversion of normal cells to tumor cells. Here, we show that skin-specific expression of B7-H1 accelerates in...
متن کاملExpression of genes for B7-H3 and other T cell ligands by nasal epithelial cells during differentiation and activation.
Epithelial cells of the human respiratory tract express human leukocyte antigen (HLA) and the costimulatory molecules B7-1 and B7-2. Little is known, however, about the constitutive expression of genes encoding for the more recently identified members of the B7 homolog family of costimulatory molecules or about the influence of cellular differentiation and cytokines on their activity or on that...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملExpression of programmed death-1 ligand (PD-L) 1, PD-L2, B7-H3, and inducible costimulator ligand on human respiratory tract epithelial cells and regulation by respiratory syncytial virus and type 1 and 2 cytokines.
BACKGROUND Respiratory syncytial virus (RSV) is associated with wheezing illness, and infections can occur repeatedly throughout life. We hypothesized that RSV infection of respiratory tract epithelial cells up-regulates B7 molecules that regulate memory immune responses and that type 1 and 2 cytokines differentially modulate this induction. METHODS We used flow-cytometric analysis to investi...
متن کاملConstitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells.
Histochemical activity and immunoreactivity of nitric oxide synthase (NOS, EC 1.14.13.39) have been recently demonstrated in human lung epithelium. However, the molecular nature of NOS and the regulation and function of the enzyme(s) in the airway is not known. A549 cells (human alveolar type II epithelium-like), BEAS 2B cells (transformed human bronchial epithelial cells), and primary cultures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2005